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Experiment 8. Electronic structure calculations on diatomic molecules 
 

The postulates and theorems of quantum mechanics form the rigorous foundation 
for the prediction of chemical properties from first principles. Fundamental postulates of 
quantum mechanics – microscopic systems are described by ‘wave functions’ that 
completely characterize all of the physical properties of the system. Quantum mechanical 
‘operators’ correspond to each physical observable that, when applied to the wave 
function, allow one to predict the probability of finding the system to exhibit a particular 
value or range of values for that observable. 

In particular, quantum mechanical calculations are able to compute the structure 
of a molecule. The calculations are usually carried out for isolated molecules – the 
fundamental unit from which pure substances are constructed. The minimum information 
to specify a molecule is its molecular formula (the atoms of which it is composed) and 
the manner in which those atoms are connected. What is required is simply to know the 
relative positions of all atoms in space. The ‘best’ structure – has the lowest possible 
energy given an overall connectivity roughly dictated by the starting positions of the 
atoms as chosen by the theoretician. Geometry optimization in terms of energy 
minimization will give us then the best (optimal) structure. 

The fundamental postulate of quantum mechanics – wave function exists for any 
chemical system, appropriate operators (functions) which act upon  return the 
observable properties of the system: 
      = e 
 is an operator, e is a scalar value for some property of the system. When the equation 
holds,  is an eigenfunction, e is an eigenvalue. The probability that a chemical system 
will be found within some region of multidimensional space is equal to the integral of 
||2 over that region of space. The postulates place certain constraints on an acceptable 
wave function: 1) for a bound particle, the normalized integral of ||2 over all space must 
be unity (the probability of finding it somewhere is one); 2)  must be continuous and 
single-valued. 
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 The operator that returns the system energy, E, as an eigernvalue is called 
Hamiltonian operator: 
  H = E  -  Shrödinger equation 
The Hamiltonian operator takes into account five contributions to the total energy: the 
kinetic energy of the electrons and nuclei, the attraction of the electrons to the nuclei, and 
the interelectronic and internuclear repulsions: 
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 is Plank’s constant divided by 2; 2 is the Laplasian operator: 

   i
2  2

xi
2  2

yi
2  2

zi
2  

The Hamiltonian operator is composed from the kinetic and potential energy parts. The 
potential energy parts are the same as in classical mechanics. The kinetic energy for a 

QM particle is not |p|2/2m but 

T   2

2m2. 

The Born-Oppenheimer Approximation 
 Under typical conditions, the nuclei of molecular systems are moving much more 
slowly than the electrons (proton and neutrons are ~1800 times more massive than 
electrons) and electronic relaxation with respect to nuclear motion is instantaneous. It is 
convenient to decouple these two motions and compute electronic energies for fixed 
nuclear positions. The nuclear kinetic motion term is taken to be independent of the 
electrons, correlation in the attractive electron-nuclear potential energy term is 
eliminated, and the repulsive nuclear-nuclear potential energy term becomes a simply 
evaluated constant for a given geometry. The electronic Schrödinger equation: 

 (Hel + VN)el(qi;qk) = Eelel(qi;qk) 
Wave functions are invariant to the appearance of constant term in the Hamiltonian – in 
practice, one can almost always solve this equation without the inclusion of VN and then 
add VN to the obtained eigenvalue to obtain Eel. 
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 The Born-Oppenheimer approximation is entirely justified in most cases. It has 
very profound consequences and allows us to use the concept of a potential energy 
surface (PES): The PES is the surface defined by Eel over all possible nuclear 
coordinates. This means that we can determine electronic energy for a certain set of 
nuclear coordinates by solving the electronic Schrödinger equation. Then, by minimizing 
the energy with respect to nuclear coordinates - using gradients of the energy (first 
derivatives of the energy with respect to interatomic distances, bond angles and torsional 
angles) - we can find the equilibrium structure of a molecule. Finally, through 
calculations of second derivatives of the energy with respect to nuclear coordinates (force 
constants), we can compute vibrational frequencies, which can be observed 
experimentally using IR and Raman spectroscopy. 
 The electronic Schrödinger equation cannot be solved exactly for many-electron 
systems. However, various approximate methods exist to obtain a solution to a certain 
level of accuracy. These methods are mathematically complex (they are presented in the 
graduate course CHM5586, Computational Chemistry) and cannot be applied without the 
use of powerful computers. Fortunately, in recent decades sophisticated computer 
programs have been developed for this purpose, which allow a ‘non-expert’ to perform 
quantum chemical calculations. The most popular among these programs are HyperChem 
and GAUSSIAN. In this experiment, students will use the Windows version of the 
GAUSSIAN program to compute geometric structure and vibrational frequencies for 
diatomic molecules. This task requires from the user to prepare a GAUSSIAN input file 
containing a starting molecular geometry and specifying the method for calculations (for 
solving the electronic Schrödinger equation) and their type (geometry optimization, 
calculation of vibrational frequencies, etc.). After that, the program is submitted and the 
calculations will determine the optimal geometry (the structure that has a minimal energy 
on the potential energy surface) and vibrational frequency for the molecule of interest. 
 The general scheme how the GAUSSIAN program performs quantum chemical 
calculations is illustrated on the following flow-chart: 
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Choose a method of calculations

Specify initial molecular geometry

Compute energy for the given geometryby solving the electronic Schrodingerequation approximately

Does the current geometrysatisfy the optimizationcriteria?

Output data for optimizedgeometry

Choose new geometryaccording to optimizationalgorithm
yes

no

Compute energy gradientswith respect to molecular geometry

Compute second derivatives of energywith respect to molecular geometry(force constants)

Compute and outputvibrational frequencies  
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‘Experimental’ 
 Chose a diatomic molecule for calculations. It is recommended that it was the 
molecule for which the student carried out literature search in the PChem Lab I 
CHM3410L course. Submit GAUSSIAN program on the PC in the PChem Lab and type 
in the input data that include the method of calculations, molecular charge and 
multiplicity, and initial molecular geometry: 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Route section specifies the method and the type of calculations. The method is a 

quantum chemical procedure to be used to find an approximate solution for the electronic 
Schrödinger equation and the basis set for molecular wave function. The calculations 
should be carried out employing three different methods: 
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1) The Hartree-Fock method ‘HF’: this is the simplest ‘ab initio’ (from the first 
principles) method, in which the molecular many-electron wave function is expressed as 
a determinant composed from one-electron wave functions of all electrons in the 
molecule. The HF method is time-efficient but rather approximate, since it does not take 
into account the correlation between motion of different electrons in the molecule 
(electronic correlation): each electron is assumed to be moving in an average field created 
by all other electrons (and by nuclei). 

2) The Møller-Plesset second-order perturbation theory method (MP2): this is the 
cheapest and most efficient method, which takes into account electronic correlation to 
some extent. It should be more accurate than HF. 

3) Density functional B3LYP method. In density functional theory (DFT), the 
electronic energy is expressed as a functional of electron density (square of the wave 
function). This group of methods is the most popular and fast developing in quantum 
chemistry in recent years; they take into account electronic correlation but are as time-
efficient as HF. 

The basis set is specified after the ‘/’. The need to have a basis set in the 
GAUSSIAN calculations is related to the fact that the wave function for each electron in 
the molecule is expressed as a linear combination of atomic orbitals, i.e. the orbitals of 
the hydrogen-atom type. The basis set specifies how many hydrogen-atom type s, p, d, 
etc., orbitals are included. In these calculations, students will use the 6-31G* basis set. 

In summary, in this experiment three following calculations will be performed: 
1. # hf/6-31g* 
2. # mp2/6-31g* 
3. # b3lyp/6-31g* 

The type of calculations is also specified in the route section with keywords ‘opt’ 
and ‘freq’. The ‘opt’ keyword means ‘optimization’; the program is requested to optimize 
molecular geometry, i.e., to find the structure with the lowest potential energy. The ‘freq’ 
keyword specifies calculations of vibrational frequencies. These two keywords should be 
present in all three calculations. 

The title section includes an arbitrary comment describing your calculations. It 
will be also found in the output file. 



 7

The charge and multiplicity section indicates molecular charge and multiplicity. 
For the neutral molecules, the charge is specified as ‘0’. The multiplicity is the number of 
unpaired electrons in the molecule + 1, i.e., ‘1’ for singlet, ‘2’ for doublet, ‘3’ for triplet, 
etc. 

The molecular specification section is used to input initial molecular geometry. 
It is specified in the form of atomic Cartesian coordinates or a so-called z-matrix, which 
shows interatomic distances, bond angles, and torsional angles. In the case of a diatomic 
molecule, students need to specify only the two atoms comprising the molecule and the 
distance between them: 

Li 
H   1   R 

Here, the first atom in the molecule is lithium ‘Li’ and the second is hydrogen ‘H’ and the 
Li-H distance is designated with the variable ‘R’, which will be optimized during the 
calculations. The initial values for this variable is given (in angstrom) after a blank line: 
 R = 1.30 
 
 After the input is prepared, click the ‘Run’ button to submit calculations. You will 
then be prompted to specify a name for the output file and the calculations will run. 
  As the calculations are completed, open the output file with a word processor 
(MsWord). The output file contains a lot of information including molecular potential 
energy calculated for each optimization step, wave function expressed as linear 
combination of atomic orbitals in the basis set, orbital energies, atomic electric charges, 
etc. The required information is the optimized interatomic distance and the vibrational 
frequency, which are given as follows: 

-- Stationary point found. 
                         ---------------------------- 
                         !   Optimized Parameters   ! 
                         ! (Angstroms and Degrees)  ! 
 ------------------------                            ------------------------- 
 ! Name  Definition              Value          Derivative Info.             ! 
 ----------------------------------------------------------------------------- 
 ! R1    R(1,2)                  1.6209         -DE/DX =    0.               ! 
 ----------------------------------------------------------------------------- 
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and 
Harmonic frequencies (cm**-1), IR intensities (KM/Mole), 
 Raman scattering activities (A**4/AMU), Raman depolarization ratios, 
 reduced masses (AMU), force constants (mDyne/A) and normal coordinates: 
                     1 
                    SG 
 Frequencies --  1399.1094 
 Red. masses --     1.1293 
 Frc consts  --     1.3024 
 IR Inten    --   117.6770 
 Raman Activ --     0.0000 
 Depolar     --     0.0000 
 Atom AN      X      Y      Z 
   1   3     0.00   0.00   0.14 

      2   1     0.00   0.00  -0.99 
 
 For LiH, these results show that the optimal Li-H bond length is 1.6209 Å and the 
vibrational frequency is 1399 cm-1. 
 The lab report should include the results (interatomic distances and vibrational 
frequencies) of the calculations using three different methods, HF/6-31g*, MP2/6-31g*, 
and B3LYP/6-31g*. In the discussion, compare your calculated results with the literature 
data (experimental and theoretical) and compare the accuracy of different methods versus 
experimental values. Also sketch the molecular orbital energy diagram for your molecule, 
deduce its ground state electronic configuration, and multiplicity. Compare the deduced 
electronic configuration with the calculated one – the GAUSSIAN output provides 
calculated energies of the occupied and vacant molecular orbitals. 
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 The operator that returns the system energy, E, as an eigernvalue is called 
Hamiltonian operator: 
  H = E  -  Shrödinger equation 
The Hamiltonian operator takes into account five contributions to the total energy: the 
kinetic energy of the electrons and nuclei, the attraction of the electrons to the nuclei, and 
the interelectronic and internuclear repulsions: 
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The Hamiltonian operator is composed from the kinetic and potential energy parts. The 
potential energy parts are the same as in classical mechanics. The kinetic energy for a 

QM particle is not |p|2/2m but 

T   2

2m2. 

The Born-Oppenheimer Approximation 
 Under typical conditions, the nuclei of molecular systems are moving much more 
slowly than the electrons (proton and neutrons are ~1800 times more massive than 
electrons) and electronic relaxation with respect to nuclear motion is instantaneous. It is 
convenient to decouple these two motions and compute electronic energies for fixed 
nuclear positions. The nuclear kinetic motion term is taken to be independent of the 
electrons, correlation in the attractive electron-nuclear potential energy term is 
eliminated, and the repulsive nuclear-nuclear potential energy term becomes a simply 
evaluated constant for a given geometry. The electronic Schrödinger equation: 

 (Hel + VN)el(qi;qk) = Eelel(qi;qk) 
Wave functions are invariant to the appearance of constant term in the Hamiltonian – in 
practice, one can almost always solve this equation without the inclusion of VN and then 
add VN to the obtained eigenvalue to obtain Eel. 
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 The Born-Oppenheimer approximation is entirely justified in most cases. It has 
very profound consequences and allows us to use the concept of a potential energy 
surface (PES): The PES is the surface defined by Eel over all possible nuclear 
coordinates. This means that we can determine electronic energy for a certain set of 
nuclear coordinates by solving the electronic Schrödinger equation. Then, by minimizing 
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use of powerful computers. Fortunately, in recent decades sophisticated computer 
programs have been developed for this purpose, which allow a ‘non-expert’ to perform 
quantum chemical calculations. The most popular among these programs are HyperChem 
and GAUSSIAN. In this experiment, students will use the Windows version of the 
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diatomic molecules. This task requires from the user to prepare a GAUSSIAN input file 
containing a starting molecular geometry and specifying the method for calculations (for 
solving the electronic Schrödinger equation) and their type (geometry optimization, 
calculation of vibrational frequencies, etc.). After that, the program is submitted and the 
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on the potential energy surface) and vibrational frequency for the molecule of interest. 
 The general scheme how the GAUSSIAN program performs quantum chemical 
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‘Experimental’ 
 Chose a diatomic molecule for calculations. It is recommended that it was the 
molecule for which the student carried out literature search in the PChem Lab I 
CHM3410L course. Submit GAUSSIAN program on the PC in the PChem Lab and type 
in the input data that include the method of calculations, molecular charge and 
multiplicity, and initial molecular geometry: 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Route section specifies the method and the type of calculations. The method is a 

quantum chemical procedure to be used to find an approximate solution for the electronic 
Schrödinger equation and the basis set for molecular wave function. The calculations 
should be carried out employing three different methods: 
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1) The Hartree-Fock method ‘HF’: this is the simplest ‘ab initio’ (from the first 
principles) method, in which the molecular many-electron wave function is expressed as 
a determinant composed from one-electron wave functions of all electrons in the 
molecule. The HF method is time-efficient but rather approximate, since it does not take 
into account the correlation between motion of different electrons in the molecule 
(electronic correlation): each electron is assumed to be moving in an average field created 
by all other electrons (and by nuclei). 

2) The Møller-Plesset second-order perturbation theory method (MP2): this is the 
cheapest and most efficient method, which takes into account electronic correlation to 
some extent. It should be more accurate than HF. 

3) Density functional B3LYP method. In density functional theory (DFT), the 
electronic energy is expressed as a functional of electron density (square of the wave 
function). This group of methods is the most popular and fast developing in quantum 
chemistry in recent years; they take into account electronic correlation but are as time-
efficient as HF. 

The basis set is specified after the ‘/’. The need to have a basis set in the 
GAUSSIAN calculations is related to the fact that the wave function for each electron in 
the molecule is expressed as a linear combination of atomic orbitals, i.e. the orbitals of 
the hydrogen-atom type. The basis set specifies how many hydrogen-atom type s, p, d, 
etc., orbitals are included. In these calculations, students will use the 6-31G* basis set. 

In summary, in this experiment three following calculations will be performed: 
1. # hf/6-31g* 
2. # mp2/6-31g* 
3. # b3lyp/6-31g* 

The type of calculations is also specified in the route section with keywords ‘opt’ 
and ‘freq’. The ‘opt’ keyword means ‘optimization’; the program is requested to optimize 
molecular geometry, i.e., to find the structure with the lowest potential energy. The ‘freq’ 
keyword specifies calculations of vibrational frequencies. These two keywords should be 
present in all three calculations. 

The title section includes an arbitrary comment describing your calculations. It 
will be also found in the output file. 
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The charge and multiplicity section indicates molecular charge and multiplicity. 
For the neutral molecules, the charge is specified as ‘0’. The multiplicity is the number of 
unpaired electrons in the molecule + 1, i.e., ‘1’ for singlet, ‘2’ for doublet, ‘3’ for triplet, 
etc. 

The molecular specification section is used to input initial molecular geometry. 
It is specified in the form of atomic Cartesian coordinates or a so-called z-matrix, which 
shows interatomic distances, bond angles, and torsional angles. In the case of a diatomic 
molecule, students need to specify only the two atoms comprising the molecule and the 
distance between them: 

Li 
H   1   R 

Here, the first atom in the molecule is lithium ‘Li’ and the second is hydrogen ‘H’ and the 
Li-H distance is designated with the variable ‘R’, which will be optimized during the 
calculations. The initial values for this variable is given (in angstrom) after a blank line: 
 R = 1.30 
 
 After the input is prepared, click the ‘Run’ button to submit calculations. You will 
then be prompted to specify a name for the output file and the calculations will run. 
  As the calculations are completed, open the output file with a word processor 
(MsWord). The output file contains a lot of information including molecular potential 
energy calculated for each optimization step, wave function expressed as linear 
combination of atomic orbitals in the basis set, orbital energies, atomic electric charges, 
etc. The required information is the optimized interatomic distance and the vibrational 
frequency, which are given as follows: 

-- Stationary point found. 
                         ---------------------------- 
                         !   Optimized Parameters   ! 
                         ! (Angstroms and Degrees)  ! 
 ------------------------                            ------------------------- 
 ! Name  Definition              Value          Derivative Info.             ! 
 ----------------------------------------------------------------------------- 
 ! R1    R(1,2)                  1.6209         -DE/DX =    0.               ! 
 ----------------------------------------------------------------------------- 
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and 
Harmonic frequencies (cm**-1), IR intensities (KM/Mole), 
 Raman scattering activities (A**4/AMU), Raman depolarization ratios, 
 reduced masses (AMU), force constants (mDyne/A) and normal coordinates: 
                     1 
                    SG 
 Frequencies --  1399.1094 
 Red. masses --     1.1293 
 Frc consts  --     1.3024 
 IR Inten    --   117.6770 
 Raman Activ --     0.0000 
 Depolar     --     0.0000 
 Atom AN      X      Y      Z 
   1   3     0.00   0.00   0.14 

      2   1     0.00   0.00  -0.99 
 
 For LiH, these results show that the optimal Li-H bond length is 1.6209 Å and the 
vibrational frequency is 1399 cm-1. 
 The lab report should include the results (interatomic distances and vibrational 
frequencies) of the calculations using three different methods, HF/6-31g*, MP2/6-31g*, 
and B3LYP/6-31g*. In the discussion, compare your calculated results with the literature 
data (experimental and theoretical) and compare the accuracy of different methods versus 
experimental values. Also sketch the molecular orbital energy diagram for your molecule, 
deduce its ground state electronic configuration, and multiplicity. Compare the deduced 
electronic configuration with the calculated one – the GAUSSIAN output provides 
calculated energies of the occupied and vacant molecular orbitals. 
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Hamiltonian operator: 
  H = E  -  Shrödinger equation 
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potential energy parts are the same as in classical mechanics. The kinetic energy for a 

QM particle is not |p|2/2m but 
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The Born-Oppenheimer Approximation 
 Under typical conditions, the nuclei of molecular systems are moving much more 
slowly than the electrons (proton and neutrons are ~1800 times more massive than 
electrons) and electronic relaxation with respect to nuclear motion is instantaneous. It is 
convenient to decouple these two motions and compute electronic energies for fixed 
nuclear positions. The nuclear kinetic motion term is taken to be independent of the 
electrons, correlation in the attractive electron-nuclear potential energy term is 
eliminated, and the repulsive nuclear-nuclear potential energy term becomes a simply 
evaluated constant for a given geometry. The electronic Schrödinger equation: 

 (Hel + VN)el(qi;qk) = Eelel(qi;qk) 
Wave functions are invariant to the appearance of constant term in the Hamiltonian – in 
practice, one can almost always solve this equation without the inclusion of VN and then 
add VN to the obtained eigenvalue to obtain Eel. 
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programs have been developed for this purpose, which allow a ‘non-expert’ to perform 
quantum chemical calculations. The most popular among these programs are HyperChem 
and GAUSSIAN. In this experiment, students will use the Windows version of the 
GAUSSIAN program to compute geometric structure and vibrational frequencies for 
diatomic molecules. This task requires from the user to prepare a GAUSSIAN input file 
containing a starting molecular geometry and specifying the method for calculations (for 
solving the electronic Schrödinger equation) and their type (geometry optimization, 
calculation of vibrational frequencies, etc.). After that, the program is submitted and the 
calculations will determine the optimal geometry (the structure that has a minimal energy 
on the potential energy surface) and vibrational frequency for the molecule of interest. 
 The general scheme how the GAUSSIAN program performs quantum chemical 
calculations is illustrated on the following flow-chart: 
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yes

no

Compute energy gradientswith respect to molecular geometry

Compute second derivatives of energywith respect to molecular geometry(force constants)

Compute and outputvibrational frequencies  
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‘Experimental’ 
 Chose a diatomic molecule for calculations. It is recommended that it was the 
molecule for which the student carried out literature search in the PChem Lab I 
CHM3410L course. Submit GAUSSIAN program on the PC in the PChem Lab and type 
in the input data that include the method of calculations, molecular charge and 
multiplicity, and initial molecular geometry: 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Route section specifies the method and the type of calculations. The method is a 

quantum chemical procedure to be used to find an approximate solution for the electronic 
Schrödinger equation and the basis set for molecular wave function. The calculations 
should be carried out employing three different methods: 
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1) The Hartree-Fock method ‘HF’: this is the simplest ‘ab initio’ (from the first 
principles) method, in which the molecular many-electron wave function is expressed as 
a determinant composed from one-electron wave functions of all electrons in the 
molecule. The HF method is time-efficient but rather approximate, since it does not take 
into account the correlation between motion of different electrons in the molecule 
(electronic correlation): each electron is assumed to be moving in an average field created 
by all other electrons (and by nuclei). 

2) The Møller-Plesset second-order perturbation theory method (MP2): this is the 
cheapest and most efficient method, which takes into account electronic correlation to 
some extent. It should be more accurate than HF. 

3) Density functional B3LYP method. In density functional theory (DFT), the 
electronic energy is expressed as a functional of electron density (square of the wave 
function). This group of methods is the most popular and fast developing in quantum 
chemistry in recent years; they take into account electronic correlation but are as time-
efficient as HF. 

The basis set is specified after the ‘/’. The need to have a basis set in the 
GAUSSIAN calculations is related to the fact that the wave function for each electron in 
the molecule is expressed as a linear combination of atomic orbitals, i.e. the orbitals of 
the hydrogen-atom type. The basis set specifies how many hydrogen-atom type s, p, d, 
etc., orbitals are included. In these calculations, students will use the 6-31G* basis set. 

In summary, in this experiment three following calculations will be performed: 
1. # hf/6-31g* 
2. # mp2/6-31g* 
3. # b3lyp/6-31g* 

The type of calculations is also specified in the route section with keywords ‘opt’ 
and ‘freq’. The ‘opt’ keyword means ‘optimization’; the program is requested to optimize 
molecular geometry, i.e., to find the structure with the lowest potential energy. The ‘freq’ 
keyword specifies calculations of vibrational frequencies. These two keywords should be 
present in all three calculations. 

The title section includes an arbitrary comment describing your calculations. It 
will be also found in the output file. 
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The charge and multiplicity section indicates molecular charge and multiplicity. 
For the neutral molecules, the charge is specified as ‘0’. The multiplicity is the number of 
unpaired electrons in the molecule + 1, i.e., ‘1’ for singlet, ‘2’ for doublet, ‘3’ for triplet, 
etc. 

The molecular specification section is used to input initial molecular geometry. 
It is specified in the form of atomic Cartesian coordinates or a so-called z-matrix, which 
shows interatomic distances, bond angles, and torsional angles. In the case of a diatomic 
molecule, students need to specify only the two atoms comprising the molecule and the 
distance between them: 

Li 
H   1   R 

Here, the first atom in the molecule is lithium ‘Li’ and the second is hydrogen ‘H’ and the 
Li-H distance is designated with the variable ‘R’, which will be optimized during the 
calculations. The initial values for this variable is given (in angstrom) after a blank line: 
 R = 1.30 
 
 After the input is prepared, click the ‘Run’ button to submit calculations. You will 
then be prompted to specify a name for the output file and the calculations will run. 
  As the calculations are completed, open the output file with a word processor 
(MsWord). The output file contains a lot of information including molecular potential 
energy calculated for each optimization step, wave function expressed as linear 
combination of atomic orbitals in the basis set, orbital energies, atomic electric charges, 
etc. The required information is the optimized interatomic distance and the vibrational 
frequency, which are given as follows: 

-- Stationary point found. 
                         ---------------------------- 
                         !   Optimized Parameters   ! 
                         ! (Angstroms and Degrees)  ! 
 ------------------------                            ------------------------- 
 ! Name  Definition              Value          Derivative Info.             ! 
 ----------------------------------------------------------------------------- 
 ! R1    R(1,2)                  1.6209         -DE/DX =    0.               ! 
 ----------------------------------------------------------------------------- 
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and 
Harmonic frequencies (cm**-1), IR intensities (KM/Mole), 
 Raman scattering activities (A**4/AMU), Raman depolarization ratios, 
 reduced masses (AMU), force constants (mDyne/A) and normal coordinates: 
                     1 
                    SG 
 Frequencies --  1399.1094 
 Red. masses --     1.1293 
 Frc consts  --     1.3024 
 IR Inten    --   117.6770 
 Raman Activ --     0.0000 
 Depolar     --     0.0000 
 Atom AN      X      Y      Z 
   1   3     0.00   0.00   0.14 

      2   1     0.00   0.00  -0.99 
 
 For LiH, these results show that the optimal Li-H bond length is 1.6209 Å and the 
vibrational frequency is 1399 cm-1. 
 The lab report should include the results (interatomic distances and vibrational 
frequencies) of the calculations using three different methods, HF/6-31g*, MP2/6-31g*, 
and B3LYP/6-31g*. In the discussion, compare your calculated results with the literature 
data (experimental and theoretical) and compare the accuracy of different methods versus 
experimental values. Also sketch the molecular orbital energy diagram for your molecule, 
deduce its ground state electronic configuration, and multiplicity. Compare the deduced 
electronic configuration with the calculated one – the GAUSSIAN output provides 
calculated energies of the occupied and vacant molecular orbitals. 
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Experiment 8. Electronic structure calculations on diatomic molecules 
 

The postulates and theorems of quantum mechanics form the rigorous foundation 
for the prediction of chemical properties from first principles. Fundamental postulates of 
quantum mechanics – microscopic systems are described by ‘wave functions’ that 
completely characterize all of the physical properties of the system. Quantum mechanical 
‘operators’ correspond to each physical observable that, when applied to the wave 
function, allow one to predict the probability of finding the system to exhibit a particular 
value or range of values for that observable. 

In particular, quantum mechanical calculations are able to compute the structure 
of a molecule. The calculations are usually carried out for isolated molecules – the 
fundamental unit from which pure substances are constructed. The minimum information 
to specify a molecule is its molecular formula (the atoms of which it is composed) and 
the manner in which those atoms are connected. What is required is simply to know the 
relative positions of all atoms in space. The ‘best’ structure – has the lowest possible 
energy given an overall connectivity roughly dictated by the starting positions of the 
atoms as chosen by the theoretician. Geometry optimization in terms of energy 
minimization will give us then the best (optimal) structure. 

The fundamental postulate of quantum mechanics – wave function exists for any 
chemical system, appropriate operators (functions) which act upon  return the 
observable properties of the system: 
      = e 
 is an operator, e is a scalar value for some property of the system. When the equation 
holds,  is an eigenfunction, e is an eigenvalue. The probability that a chemical system 
will be found within some region of multidimensional space is equal to the integral of 
||2 over that region of space. The postulates place certain constraints on an acceptable 
wave function: 1) for a bound particle, the normalized integral of ||2 over all space must 
be unity (the probability of finding it somewhere is one); 2)  must be continuous and 
single-valued. 
 



 2

 The operator that returns the system energy, E, as an eigernvalue is called 
Hamiltonian operator: 
  H = E  -  Shrödinger equation 
The Hamiltonian operator takes into account five contributions to the total energy: the 
kinetic energy of the electrons and nuclei, the attraction of the electrons to the nuclei, and 
the interelectronic and internuclear repulsions: 



H   2

2me
i

2
i
  2

2me
k

2  e2Zk
rik

 e2

rij
 e2ZkZ l

rklkl


i j


k


i


k
  

 is Plank’s constant divided by 2; 2 is the Laplasian operator: 
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The Hamiltonian operator is composed from the kinetic and potential energy parts. The 
potential energy parts are the same as in classical mechanics. The kinetic energy for a 

QM particle is not |p|2/2m but 

T   2

2m2. 

The Born-Oppenheimer Approximation 
 Under typical conditions, the nuclei of molecular systems are moving much more 
slowly than the electrons (proton and neutrons are ~1800 times more massive than 
electrons) and electronic relaxation with respect to nuclear motion is instantaneous. It is 
convenient to decouple these two motions and compute electronic energies for fixed 
nuclear positions. The nuclear kinetic motion term is taken to be independent of the 
electrons, correlation in the attractive electron-nuclear potential energy term is 
eliminated, and the repulsive nuclear-nuclear potential energy term becomes a simply 
evaluated constant for a given geometry. The electronic Schrödinger equation: 

 (Hel + VN)el(qi;qk) = Eelel(qi;qk) 
Wave functions are invariant to the appearance of constant term in the Hamiltonian – in 
practice, one can almost always solve this equation without the inclusion of VN and then 
add VN to the obtained eigenvalue to obtain Eel. 
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 The Born-Oppenheimer approximation is entirely justified in most cases. It has 
very profound consequences and allows us to use the concept of a potential energy 
surface (PES): The PES is the surface defined by Eel over all possible nuclear 
coordinates. This means that we can determine electronic energy for a certain set of 
nuclear coordinates by solving the electronic Schrödinger equation. Then, by minimizing 
the energy with respect to nuclear coordinates - using gradients of the energy (first 
derivatives of the energy with respect to interatomic distances, bond angles and torsional 
angles) - we can find the equilibrium structure of a molecule. Finally, through 
calculations of second derivatives of the energy with respect to nuclear coordinates (force 
constants), we can compute vibrational frequencies, which can be observed 
experimentally using IR and Raman spectroscopy. 
 The electronic Schrödinger equation cannot be solved exactly for many-electron 
systems. However, various approximate methods exist to obtain a solution to a certain 
level of accuracy. These methods are mathematically complex (they are presented in the 
graduate course CHM5586, Computational Chemistry) and cannot be applied without the 
use of powerful computers. Fortunately, in recent decades sophisticated computer 
programs have been developed for this purpose, which allow a ‘non-expert’ to perform 
quantum chemical calculations. The most popular among these programs are HyperChem 
and GAUSSIAN. In this experiment, students will use the Windows version of the 
GAUSSIAN program to compute geometric structure and vibrational frequencies for 
diatomic molecules. This task requires from the user to prepare a GAUSSIAN input file 
containing a starting molecular geometry and specifying the method for calculations (for 
solving the electronic Schrödinger equation) and their type (geometry optimization, 
calculation of vibrational frequencies, etc.). After that, the program is submitted and the 
calculations will determine the optimal geometry (the structure that has a minimal energy 
on the potential energy surface) and vibrational frequency for the molecule of interest. 
 The general scheme how the GAUSSIAN program performs quantum chemical 
calculations is illustrated on the following flow-chart: 
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Choose a method of calculations

Specify initial molecular geometry

Compute energy for the given geometryby solving the electronic Schrodingerequation approximately

Does the current geometrysatisfy the optimizationcriteria?

Output data for optimizedgeometry

Choose new geometryaccording to optimizationalgorithm
yes

no

Compute energy gradientswith respect to molecular geometry

Compute second derivatives of energywith respect to molecular geometry(force constants)

Compute and outputvibrational frequencies  
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‘Experimental’ 
 Chose a diatomic molecule for calculations. It is recommended that it was the 
molecule for which the student carried out literature search in the PChem Lab I 
CHM3410L course. Submit GAUSSIAN program on the PC in the PChem Lab and type 
in the input data that include the method of calculations, molecular charge and 
multiplicity, and initial molecular geometry: 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Route section specifies the method and the type of calculations. The method is a 

quantum chemical procedure to be used to find an approximate solution for the electronic 
Schrödinger equation and the basis set for molecular wave function. The calculations 
should be carried out employing three different methods: 
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1) The Hartree-Fock method ‘HF’: this is the simplest ‘ab initio’ (from the first 
principles) method, in which the molecular many-electron wave function is expressed as 
a determinant composed from one-electron wave functions of all electrons in the 
molecule. The HF method is time-efficient but rather approximate, since it does not take 
into account the correlation between motion of different electrons in the molecule 
(electronic correlation): each electron is assumed to be moving in an average field created 
by all other electrons (and by nuclei). 

2) The Møller-Plesset second-order perturbation theory method (MP2): this is the 
cheapest and most efficient method, which takes into account electronic correlation to 
some extent. It should be more accurate than HF. 

3) Density functional B3LYP method. In density functional theory (DFT), the 
electronic energy is expressed as a functional of electron density (square of the wave 
function). This group of methods is the most popular and fast developing in quantum 
chemistry in recent years; they take into account electronic correlation but are as time-
efficient as HF. 

The basis set is specified after the ‘/’. The need to have a basis set in the 
GAUSSIAN calculations is related to the fact that the wave function for each electron in 
the molecule is expressed as a linear combination of atomic orbitals, i.e. the orbitals of 
the hydrogen-atom type. The basis set specifies how many hydrogen-atom type s, p, d, 
etc., orbitals are included. In these calculations, students will use the 6-31G* basis set. 

In summary, in this experiment three following calculations will be performed: 
1. # hf/6-31g* 
2. # mp2/6-31g* 
3. # b3lyp/6-31g* 

The type of calculations is also specified in the route section with keywords ‘opt’ 
and ‘freq’. The ‘opt’ keyword means ‘optimization’; the program is requested to optimize 
molecular geometry, i.e., to find the structure with the lowest potential energy. The ‘freq’ 
keyword specifies calculations of vibrational frequencies. These two keywords should be 
present in all three calculations. 

The title section includes an arbitrary comment describing your calculations. It 
will be also found in the output file. 
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The charge and multiplicity section indicates molecular charge and multiplicity. 
For the neutral molecules, the charge is specified as ‘0’. The multiplicity is the number of 
unpaired electrons in the molecule + 1, i.e., ‘1’ for singlet, ‘2’ for doublet, ‘3’ for triplet, 
etc. 

The molecular specification section is used to input initial molecular geometry. 
It is specified in the form of atomic Cartesian coordinates or a so-called z-matrix, which 
shows interatomic distances, bond angles, and torsional angles. In the case of a diatomic 
molecule, students need to specify only the two atoms comprising the molecule and the 
distance between them: 

Li 
H   1   R 

Here, the first atom in the molecule is lithium ‘Li’ and the second is hydrogen ‘H’ and the 
Li-H distance is designated with the variable ‘R’, which will be optimized during the 
calculations. The initial values for this variable is given (in angstrom) after a blank line: 
 R = 1.30 
 
 After the input is prepared, click the ‘Run’ button to submit calculations. You will 
then be prompted to specify a name for the output file and the calculations will run. 
  As the calculations are completed, open the output file with a word processor 
(MsWord). The output file contains a lot of information including molecular potential 
energy calculated for each optimization step, wave function expressed as linear 
combination of atomic orbitals in the basis set, orbital energies, atomic electric charges, 
etc. The required information is the optimized interatomic distance and the vibrational 
frequency, which are given as follows: 

-- Stationary point found. 
                         ---------------------------- 
                         !   Optimized Parameters   ! 
                         ! (Angstroms and Degrees)  ! 
 ------------------------                            ------------------------- 
 ! Name  Definition              Value          Derivative Info.             ! 
 ----------------------------------------------------------------------------- 
 ! R1    R(1,2)                  1.6209         -DE/DX =    0.               ! 
 ----------------------------------------------------------------------------- 
 



 8

and 
Harmonic frequencies (cm**-1), IR intensities (KM/Mole), 
 Raman scattering activities (A**4/AMU), Raman depolarization ratios, 
 reduced masses (AMU), force constants (mDyne/A) and normal coordinates: 
                     1 
                    SG 
 Frequencies --  1399.1094 
 Red. masses --     1.1293 
 Frc consts  --     1.3024 
 IR Inten    --   117.6770 
 Raman Activ --     0.0000 
 Depolar     --     0.0000 
 Atom AN      X      Y      Z 
   1   3     0.00   0.00   0.14 

      2   1     0.00   0.00  -0.99 
 
 For LiH, these results show that the optimal Li-H bond length is 1.6209 Å and the 
vibrational frequency is 1399 cm-1. 
 The lab report should include the results (interatomic distances and vibrational 
frequencies) of the calculations using three different methods, HF/6-31g*, MP2/6-31g*, 
and B3LYP/6-31g*. In the discussion, compare your calculated results with the literature 
data (experimental and theoretical) and compare the accuracy of different methods versus 
experimental values. Also sketch the molecular orbital energy diagram for your molecule, 
deduce its ground state electronic configuration, and multiplicity. Compare the deduced 
electronic configuration with the calculated one – the GAUSSIAN output provides 
calculated energies of the occupied and vacant molecular orbitals. 
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Experiment 8. Electronic structure calculations on diatomic molecules 
 

The postulates and theorems of quantum mechanics form the rigorous foundation 
for the prediction of chemical properties from first principles. Fundamental postulates of 
quantum mechanics – microscopic systems are described by ‘wave functions’ that 
completely characterize all of the physical properties of the system. Quantum mechanical 
‘operators’ correspond to each physical observable that, when applied to the wave 
function, allow one to predict the probability of finding the system to exhibit a particular 
value or range of values for that observable. 

In particular, quantum mechanical calculations are able to compute the structure 
of a molecule. The calculations are usually carried out for isolated molecules – the 
fundamental unit from which pure substances are constructed. The minimum information 
to specify a molecule is its molecular formula (the atoms of which it is composed) and 
the manner in which those atoms are connected. What is required is simply to know the 
relative positions of all atoms in space. The ‘best’ structure – has the lowest possible 
energy given an overall connectivity roughly dictated by the starting positions of the 
atoms as chosen by the theoretician. Geometry optimization in terms of energy 
minimization will give us then the best (optimal) structure. 

The fundamental postulate of quantum mechanics – wave function exists for any 
chemical system, appropriate operators (functions) which act upon  return the 
observable properties of the system: 
      = e 
 is an operator, e is a scalar value for some property of the system. When the equation 
holds,  is an eigenfunction, e is an eigenvalue. The probability that a chemical system 
will be found within some region of multidimensional space is equal to the integral of 
||2 over that region of space. The postulates place certain constraints on an acceptable 
wave function: 1) for a bound particle, the normalized integral of ||2 over all space must 
be unity (the probability of finding it somewhere is one); 2)  must be continuous and 
single-valued. 
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 The operator that returns the system energy, E, as an eigernvalue is called 
Hamiltonian operator: 
  H = E  -  Shrödinger equation 
The Hamiltonian operator takes into account five contributions to the total energy: the 
kinetic energy of the electrons and nuclei, the attraction of the electrons to the nuclei, and 
the interelectronic and internuclear repulsions: 
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 is Plank’s constant divided by 2; 2 is the Laplasian operator: 
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The Hamiltonian operator is composed from the kinetic and potential energy parts. The 
potential energy parts are the same as in classical mechanics. The kinetic energy for a 

QM particle is not |p|2/2m but 

T   2

2m2. 

The Born-Oppenheimer Approximation 
 Under typical conditions, the nuclei of molecular systems are moving much more 
slowly than the electrons (proton and neutrons are ~1800 times more massive than 
electrons) and electronic relaxation with respect to nuclear motion is instantaneous. It is 
convenient to decouple these two motions and compute electronic energies for fixed 
nuclear positions. The nuclear kinetic motion term is taken to be independent of the 
electrons, correlation in the attractive electron-nuclear potential energy term is 
eliminated, and the repulsive nuclear-nuclear potential energy term becomes a simply 
evaluated constant for a given geometry. The electronic Schrödinger equation: 

 (Hel + VN)el(qi;qk) = Eelel(qi;qk) 
Wave functions are invariant to the appearance of constant term in the Hamiltonian – in 
practice, one can almost always solve this equation without the inclusion of VN and then 
add VN to the obtained eigenvalue to obtain Eel. 
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 The Born-Oppenheimer approximation is entirely justified in most cases. It has 
very profound consequences and allows us to use the concept of a potential energy 
surface (PES): The PES is the surface defined by Eel over all possible nuclear 
coordinates. This means that we can determine electronic energy for a certain set of 
nuclear coordinates by solving the electronic Schrödinger equation. Then, by minimizing 
the energy with respect to nuclear coordinates - using gradients of the energy (first 
derivatives of the energy with respect to interatomic distances, bond angles and torsional 
angles) - we can find the equilibrium structure of a molecule. Finally, through 
calculations of second derivatives of the energy with respect to nuclear coordinates (force 
constants), we can compute vibrational frequencies, which can be observed 
experimentally using IR and Raman spectroscopy. 
 The electronic Schrödinger equation cannot be solved exactly for many-electron 
systems. However, various approximate methods exist to obtain a solution to a certain 
level of accuracy. These methods are mathematically complex (they are presented in the 
graduate course CHM5586, Computational Chemistry) and cannot be applied without the 
use of powerful computers. Fortunately, in recent decades sophisticated computer 
programs have been developed for this purpose, which allow a ‘non-expert’ to perform 
quantum chemical calculations. The most popular among these programs are HyperChem 
and GAUSSIAN. In this experiment, students will use the Windows version of the 
GAUSSIAN program to compute geometric structure and vibrational frequencies for 
diatomic molecules. This task requires from the user to prepare a GAUSSIAN input file 
containing a starting molecular geometry and specifying the method for calculations (for 
solving the electronic Schrödinger equation) and their type (geometry optimization, 
calculation of vibrational frequencies, etc.). After that, the program is submitted and the 
calculations will determine the optimal geometry (the structure that has a minimal energy 
on the potential energy surface) and vibrational frequency for the molecule of interest. 
 The general scheme how the GAUSSIAN program performs quantum chemical 
calculations is illustrated on the following flow-chart: 
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Choose a method of calculations

Specify initial molecular geometry

Compute energy for the given geometryby solving the electronic Schrodingerequation approximately

Does the current geometrysatisfy the optimizationcriteria?

Output data for optimizedgeometry

Choose new geometryaccording to optimizationalgorithm
yes

no

Compute energy gradientswith respect to molecular geometry

Compute second derivatives of energywith respect to molecular geometry(force constants)

Compute and outputvibrational frequencies  
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‘Experimental’ 
 Chose a diatomic molecule for calculations. It is recommended that it was the 
molecule for which the student carried out literature search in the PChem Lab I 
CHM3410L course. Submit GAUSSIAN program on the PC in the PChem Lab and type 
in the input data that include the method of calculations, molecular charge and 
multiplicity, and initial molecular geometry: 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Route section specifies the method and the type of calculations. The method is a 

quantum chemical procedure to be used to find an approximate solution for the electronic 
Schrödinger equation and the basis set for molecular wave function. The calculations 
should be carried out employing three different methods: 
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1) The Hartree-Fock method ‘HF’: this is the simplest ‘ab initio’ (from the first 
principles) method, in which the molecular many-electron wave function is expressed as 
a determinant composed from one-electron wave functions of all electrons in the 
molecule. The HF method is time-efficient but rather approximate, since it does not take 
into account the correlation between motion of different electrons in the molecule 
(electronic correlation): each electron is assumed to be moving in an average field created 
by all other electrons (and by nuclei). 

2) The Møller-Plesset second-order perturbation theory method (MP2): this is the 
cheapest and most efficient method, which takes into account electronic correlation to 
some extent. It should be more accurate than HF. 

3) Density functional B3LYP method. In density functional theory (DFT), the 
electronic energy is expressed as a functional of electron density (square of the wave 
function). This group of methods is the most popular and fast developing in quantum 
chemistry in recent years; they take into account electronic correlation but are as time-
efficient as HF. 

The basis set is specified after the ‘/’. The need to have a basis set in the 
GAUSSIAN calculations is related to the fact that the wave function for each electron in 
the molecule is expressed as a linear combination of atomic orbitals, i.e. the orbitals of 
the hydrogen-atom type. The basis set specifies how many hydrogen-atom type s, p, d, 
etc., orbitals are included. In these calculations, students will use the 6-31G* basis set. 

In summary, in this experiment three following calculations will be performed: 
1. # hf/6-31g* 
2. # mp2/6-31g* 
3. # b3lyp/6-31g* 

The type of calculations is also specified in the route section with keywords ‘opt’ 
and ‘freq’. The ‘opt’ keyword means ‘optimization’; the program is requested to optimize 
molecular geometry, i.e., to find the structure with the lowest potential energy. The ‘freq’ 
keyword specifies calculations of vibrational frequencies. These two keywords should be 
present in all three calculations. 

The title section includes an arbitrary comment describing your calculations. It 
will be also found in the output file. 
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The charge and multiplicity section indicates molecular charge and multiplicity. 
For the neutral molecules, the charge is specified as ‘0’. The multiplicity is the number of 
unpaired electrons in the molecule + 1, i.e., ‘1’ for singlet, ‘2’ for doublet, ‘3’ for triplet, 
etc. 

The molecular specification section is used to input initial molecular geometry. 
It is specified in the form of atomic Cartesian coordinates or a so-called z-matrix, which 
shows interatomic distances, bond angles, and torsional angles. In the case of a diatomic 
molecule, students need to specify only the two atoms comprising the molecule and the 
distance between them: 

Li 
H   1   R 

Here, the first atom in the molecule is lithium ‘Li’ and the second is hydrogen ‘H’ and the 
Li-H distance is designated with the variable ‘R’, which will be optimized during the 
calculations. The initial values for this variable is given (in angstrom) after a blank line: 
 R = 1.30 
 
 After the input is prepared, click the ‘Run’ button to submit calculations. You will 
then be prompted to specify a name for the output file and the calculations will run. 
  As the calculations are completed, open the output file with a word processor 
(MsWord). The output file contains a lot of information including molecular potential 
energy calculated for each optimization step, wave function expressed as linear 
combination of atomic orbitals in the basis set, orbital energies, atomic electric charges, 
etc. The required information is the optimized interatomic distance and the vibrational 
frequency, which are given as follows: 

-- Stationary point found. 
                         ---------------------------- 
                         !   Optimized Parameters   ! 
                         ! (Angstroms and Degrees)  ! 
 ------------------------                            ------------------------- 
 ! Name  Definition              Value          Derivative Info.             ! 
 ----------------------------------------------------------------------------- 
 ! R1    R(1,2)                  1.6209         -DE/DX =    0.               ! 
 ----------------------------------------------------------------------------- 
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and 
Harmonic frequencies (cm**-1), IR intensities (KM/Mole), 
 Raman scattering activities (A**4/AMU), Raman depolarization ratios, 
 reduced masses (AMU), force constants (mDyne/A) and normal coordinates: 
                     1 
                    SG 
 Frequencies --  1399.1094 
 Red. masses --     1.1293 
 Frc consts  --     1.3024 
 IR Inten    --   117.6770 
 Raman Activ --     0.0000 
 Depolar     --     0.0000 
 Atom AN      X      Y      Z 
   1   3     0.00   0.00   0.14 

      2   1     0.00   0.00  -0.99 
 
 For LiH, these results show that the optimal Li-H bond length is 1.6209 Å and the 
vibrational frequency is 1399 cm-1. 
 The lab report should include the results (interatomic distances and vibrational 
frequencies) of the calculations using three different methods, HF/6-31g*, MP2/6-31g*, 
and B3LYP/6-31g*. In the discussion, compare your calculated results with the literature 
data (experimental and theoretical) and compare the accuracy of different methods versus 
experimental values. Also sketch the molecular orbital energy diagram for your molecule, 
deduce its ground state electronic configuration, and multiplicity. Compare the deduced 
electronic configuration with the calculated one – the GAUSSIAN output provides 
calculated energies of the occupied and vacant molecular orbitals. 
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Experiment 8. Electronic structure calculations on diatomic molecules 
 

The postulates and theorems of quantum mechanics form the rigorous foundation 
for the prediction of chemical properties from first principles. Fundamental postulates of 
quantum mechanics – microscopic systems are described by ‘wave functions’ that 
completely characterize all of the physical properties of the system. Quantum mechanical 
‘operators’ correspond to each physical observable that, when applied to the wave 
function, allow one to predict the probability of finding the system to exhibit a particular 
value or range of values for that observable. 

In particular, quantum mechanical calculations are able to compute the structure 
of a molecule. The calculations are usually carried out for isolated molecules – the 
fundamental unit from which pure substances are constructed. The minimum information 
to specify a molecule is its molecular formula (the atoms of which it is composed) and 
the manner in which those atoms are connected. What is required is simply to know the 
relative positions of all atoms in space. The ‘best’ structure – has the lowest possible 
energy given an overall connectivity roughly dictated by the starting positions of the 
atoms as chosen by the theoretician. Geometry optimization in terms of energy 
minimization will give us then the best (optimal) structure. 

The fundamental postulate of quantum mechanics – wave function exists for any 
chemical system, appropriate operators (functions) which act upon  return the 
observable properties of the system: 
      = e 
 is an operator, e is a scalar value for some property of the system. When the equation 
holds,  is an eigenfunction, e is an eigenvalue. The probability that a chemical system 
will be found within some region of multidimensional space is equal to the integral of 
||2 over that region of space. The postulates place certain constraints on an acceptable 
wave function: 1) for a bound particle, the normalized integral of ||2 over all space must 
be unity (the probability of finding it somewhere is one); 2)  must be continuous and 
single-valued. 
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 The operator that returns the system energy, E, as an eigernvalue is called 
Hamiltonian operator: 
  H = E  -  Shrödinger equation 
The Hamiltonian operator takes into account five contributions to the total energy: the 
kinetic energy of the electrons and nuclei, the attraction of the electrons to the nuclei, and 
the interelectronic and internuclear repulsions: 
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 is Plank’s constant divided by 2; 2 is the Laplasian operator: 
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The Hamiltonian operator is composed from the kinetic and potential energy parts. The 
potential energy parts are the same as in classical mechanics. The kinetic energy for a 

QM particle is not |p|2/2m but 

T   2

2m2. 

The Born-Oppenheimer Approximation 
 Under typical conditions, the nuclei of molecular systems are moving much more 
slowly than the electrons (proton and neutrons are ~1800 times more massive than 
electrons) and electronic relaxation with respect to nuclear motion is instantaneous. It is 
convenient to decouple these two motions and compute electronic energies for fixed 
nuclear positions. The nuclear kinetic motion term is taken to be independent of the 
electrons, correlation in the attractive electron-nuclear potential energy term is 
eliminated, and the repulsive nuclear-nuclear potential energy term becomes a simply 
evaluated constant for a given geometry. The electronic Schrödinger equation: 

 (Hel + VN)el(qi;qk) = Eelel(qi;qk) 
Wave functions are invariant to the appearance of constant term in the Hamiltonian – in 
practice, one can almost always solve this equation without the inclusion of VN and then 
add VN to the obtained eigenvalue to obtain Eel. 
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 The Born-Oppenheimer approximation is entirely justified in most cases. It has 
very profound consequences and allows us to use the concept of a potential energy 
surface (PES): The PES is the surface defined by Eel over all possible nuclear 
coordinates. This means that we can determine electronic energy for a certain set of 
nuclear coordinates by solving the electronic Schrödinger equation. Then, by minimizing 
the energy with respect to nuclear coordinates - using gradients of the energy (first 
derivatives of the energy with respect to interatomic distances, bond angles and torsional 
angles) - we can find the equilibrium structure of a molecule. Finally, through 
calculations of second derivatives of the energy with respect to nuclear coordinates (force 
constants), we can compute vibrational frequencies, which can be observed 
experimentally using IR and Raman spectroscopy. 
 The electronic Schrödinger equation cannot be solved exactly for many-electron 
systems. However, various approximate methods exist to obtain a solution to a certain 
level of accuracy. These methods are mathematically complex (they are presented in the 
graduate course CHM5586, Computational Chemistry) and cannot be applied without the 
use of powerful computers. Fortunately, in recent decades sophisticated computer 
programs have been developed for this purpose, which allow a ‘non-expert’ to perform 
quantum chemical calculations. The most popular among these programs are HyperChem 
and GAUSSIAN. In this experiment, students will use the Windows version of the 
GAUSSIAN program to compute geometric structure and vibrational frequencies for 
diatomic molecules. This task requires from the user to prepare a GAUSSIAN input file 
containing a starting molecular geometry and specifying the method for calculations (for 
solving the electronic Schrödinger equation) and their type (geometry optimization, 
calculation of vibrational frequencies, etc.). After that, the program is submitted and the 
calculations will determine the optimal geometry (the structure that has a minimal energy 
on the potential energy surface) and vibrational frequency for the molecule of interest. 
 The general scheme how the GAUSSIAN program performs quantum chemical 
calculations is illustrated on the following flow-chart: 
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Choose a method of calculations

Specify initial molecular geometry

Compute energy for the given geometryby solving the electronic Schrodingerequation approximately

Does the current geometrysatisfy the optimizationcriteria?

Output data for optimizedgeometry

Choose new geometryaccording to optimizationalgorithm
yes

no

Compute energy gradientswith respect to molecular geometry

Compute second derivatives of energywith respect to molecular geometry(force constants)

Compute and outputvibrational frequencies  
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‘Experimental’ 
 Chose a diatomic molecule for calculations. It is recommended that it was the 
molecule for which the student carried out literature search in the PChem Lab I 
CHM3410L course. Submit GAUSSIAN program on the PC in the PChem Lab and type 
in the input data that include the method of calculations, molecular charge and 
multiplicity, and initial molecular geometry: 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Route section specifies the method and the type of calculations. The method is a 

quantum chemical procedure to be used to find an approximate solution for the electronic 
Schrödinger equation and the basis set for molecular wave function. The calculations 
should be carried out employing three different methods: 
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1) The Hartree-Fock method ‘HF’: this is the simplest ‘ab initio’ (from the first 
principles) method, in which the molecular many-electron wave function is expressed as 
a determinant composed from one-electron wave functions of all electrons in the 
molecule. The HF method is time-efficient but rather approximate, since it does not take 
into account the correlation between motion of different electrons in the molecule 
(electronic correlation): each electron is assumed to be moving in an average field created 
by all other electrons (and by nuclei). 

2) The Møller-Plesset second-order perturbation theory method (MP2): this is the 
cheapest and most efficient method, which takes into account electronic correlation to 
some extent. It should be more accurate than HF. 

3) Density functional B3LYP method. In density functional theory (DFT), the 
electronic energy is expressed as a functional of electron density (square of the wave 
function). This group of methods is the most popular and fast developing in quantum 
chemistry in recent years; they take into account electronic correlation but are as time-
efficient as HF. 

The basis set is specified after the ‘/’. The need to have a basis set in the 
GAUSSIAN calculations is related to the fact that the wave function for each electron in 
the molecule is expressed as a linear combination of atomic orbitals, i.e. the orbitals of 
the hydrogen-atom type. The basis set specifies how many hydrogen-atom type s, p, d, 
etc., orbitals are included. In these calculations, students will use the 6-31G* basis set. 

In summary, in this experiment three following calculations will be performed: 
1. # hf/6-31g* 
2. # mp2/6-31g* 
3. # b3lyp/6-31g* 

The type of calculations is also specified in the route section with keywords ‘opt’ 
and ‘freq’. The ‘opt’ keyword means ‘optimization’; the program is requested to optimize 
molecular geometry, i.e., to find the structure with the lowest potential energy. The ‘freq’ 
keyword specifies calculations of vibrational frequencies. These two keywords should be 
present in all three calculations. 

The title section includes an arbitrary comment describing your calculations. It 
will be also found in the output file. 
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The charge and multiplicity section indicates molecular charge and multiplicity. 
For the neutral molecules, the charge is specified as ‘0’. The multiplicity is the number of 
unpaired electrons in the molecule + 1, i.e., ‘1’ for singlet, ‘2’ for doublet, ‘3’ for triplet, 
etc. 

The molecular specification section is used to input initial molecular geometry. 
It is specified in the form of atomic Cartesian coordinates or a so-called z-matrix, which 
shows interatomic distances, bond angles, and torsional angles. In the case of a diatomic 
molecule, students need to specify only the two atoms comprising the molecule and the 
distance between them: 

Li 
H   1   R 

Here, the first atom in the molecule is lithium ‘Li’ and the second is hydrogen ‘H’ and the 
Li-H distance is designated with the variable ‘R’, which will be optimized during the 
calculations. The initial values for this variable is given (in angstrom) after a blank line: 
 R = 1.30 
 
 After the input is prepared, click the ‘Run’ button to submit calculations. You will 
then be prompted to specify a name for the output file and the calculations will run. 
  As the calculations are completed, open the output file with a word processor 
(MsWord). The output file contains a lot of information including molecular potential 
energy calculated for each optimization step, wave function expressed as linear 
combination of atomic orbitals in the basis set, orbital energies, atomic electric charges, 
etc. The required information is the optimized interatomic distance and the vibrational 
frequency, which are given as follows: 

-- Stationary point found. 
                         ---------------------------- 
                         !   Optimized Parameters   ! 
                         ! (Angstroms and Degrees)  ! 
 ------------------------                            ------------------------- 
 ! Name  Definition              Value          Derivative Info.             ! 
 ----------------------------------------------------------------------------- 
 ! R1    R(1,2)                  1.6209         -DE/DX =    0.               ! 
 ----------------------------------------------------------------------------- 
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and 
Harmonic frequencies (cm**-1), IR intensities (KM/Mole), 
 Raman scattering activities (A**4/AMU), Raman depolarization ratios, 
 reduced masses (AMU), force constants (mDyne/A) and normal coordinates: 
                     1 
                    SG 
 Frequencies --  1399.1094 
 Red. masses --     1.1293 
 Frc consts  --     1.3024 
 IR Inten    --   117.6770 
 Raman Activ --     0.0000 
 Depolar     --     0.0000 
 Atom AN      X      Y      Z 
   1   3     0.00   0.00   0.14 

      2   1     0.00   0.00  -0.99 
 
 For LiH, these results show that the optimal Li-H bond length is 1.6209 Å and the 
vibrational frequency is 1399 cm-1. 
 The lab report should include the results (interatomic distances and vibrational 
frequencies) of the calculations using three different methods, HF/6-31g*, MP2/6-31g*, 
and B3LYP/6-31g*. In the discussion, compare your calculated results with the literature 
data (experimental and theoretical) and compare the accuracy of different methods versus 
experimental values. Also sketch the molecular orbital energy diagram for your molecule, 
deduce its ground state electronic configuration, and multiplicity. Compare the deduced 
electronic configuration with the calculated one – the GAUSSIAN output provides 
calculated energies of the occupied and vacant molecular orbitals. 
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Experiment 8. Electronic structure calculations on diatomic molecules 
 

The postulates and theorems of quantum mechanics form the rigorous foundation 
for the prediction of chemical properties from first principles. Fundamental postulates of 
quantum mechanics – microscopic systems are described by ‘wave functions’ that 
completely characterize all of the physical properties of the system. Quantum mechanical 
‘operators’ correspond to each physical observable that, when applied to the wave 
function, allow one to predict the probability of finding the system to exhibit a particular 
value or range of values for that observable. 

In particular, quantum mechanical calculations are able to compute the structure 
of a molecule. The calculations are usually carried out for isolated molecules – the 
fundamental unit from which pure substances are constructed. The minimum information 
to specify a molecule is its molecular formula (the atoms of which it is composed) and 
the manner in which those atoms are connected. What is required is simply to know the 
relative positions of all atoms in space. The ‘best’ structure – has the lowest possible 
energy given an overall connectivity roughly dictated by the starting positions of the 
atoms as chosen by the theoretician. Geometry optimization in terms of energy 
minimization will give us then the best (optimal) structure. 

The fundamental postulate of quantum mechanics – wave function exists for any 
chemical system, appropriate operators (functions) which act upon  return the 
observable properties of the system: 
      = e 
 is an operator, e is a scalar value for some property of the system. When the equation 
holds,  is an eigenfunction, e is an eigenvalue. The probability that a chemical system 
will be found within some region of multidimensional space is equal to the integral of 
||2 over that region of space. The postulates place certain constraints on an acceptable 
wave function: 1) for a bound particle, the normalized integral of ||2 over all space must 
be unity (the probability of finding it somewhere is one); 2)  must be continuous and 
single-valued. 
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 The operator that returns the system energy, E, as an eigernvalue is called 
Hamiltonian operator: 
  H = E  -  Shrödinger equation 
The Hamiltonian operator takes into account five contributions to the total energy: the 
kinetic energy of the electrons and nuclei, the attraction of the electrons to the nuclei, and 
the interelectronic and internuclear repulsions: 
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 is Plank’s constant divided by 2; 2 is the Laplasian operator: 
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The Hamiltonian operator is composed from the kinetic and potential energy parts. The 
potential energy parts are the same as in classical mechanics. The kinetic energy for a 

QM particle is not |p|2/2m but 

T   2

2m2. 

The Born-Oppenheimer Approximation 
 Under typical conditions, the nuclei of molecular systems are moving much more 
slowly than the electrons (proton and neutrons are ~1800 times more massive than 
electrons) and electronic relaxation with respect to nuclear motion is instantaneous. It is 
convenient to decouple these two motions and compute electronic energies for fixed 
nuclear positions. The nuclear kinetic motion term is taken to be independent of the 
electrons, correlation in the attractive electron-nuclear potential energy term is 
eliminated, and the repulsive nuclear-nuclear potential energy term becomes a simply 
evaluated constant for a given geometry. The electronic Schrödinger equation: 

 (Hel + VN)el(qi;qk) = Eelel(qi;qk) 
Wave functions are invariant to the appearance of constant term in the Hamiltonian – in 
practice, one can almost always solve this equation without the inclusion of VN and then 
add VN to the obtained eigenvalue to obtain Eel. 
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 The Born-Oppenheimer approximation is entirely justified in most cases. It has 
very profound consequences and allows us to use the concept of a potential energy 
surface (PES): The PES is the surface defined by Eel over all possible nuclear 
coordinates. This means that we can determine electronic energy for a certain set of 
nuclear coordinates by solving the electronic Schrödinger equation. Then, by minimizing 
the energy with respect to nuclear coordinates - using gradients of the energy (first 
derivatives of the energy with respect to interatomic distances, bond angles and torsional 
angles) - we can find the equilibrium structure of a molecule. Finally, through 
calculations of second derivatives of the energy with respect to nuclear coordinates (force 
constants), we can compute vibrational frequencies, which can be observed 
experimentally using IR and Raman spectroscopy. 
 The electronic Schrödinger equation cannot be solved exactly for many-electron 
systems. However, various approximate methods exist to obtain a solution to a certain 
level of accuracy. These methods are mathematically complex (they are presented in the 
graduate course CHM5586, Computational Chemistry) and cannot be applied without the 
use of powerful computers. Fortunately, in recent decades sophisticated computer 
programs have been developed for this purpose, which allow a ‘non-expert’ to perform 
quantum chemical calculations. The most popular among these programs are HyperChem 
and GAUSSIAN. In this experiment, students will use the Windows version of the 
GAUSSIAN program to compute geometric structure and vibrational frequencies for 
diatomic molecules. This task requires from the user to prepare a GAUSSIAN input file 
containing a starting molecular geometry and specifying the method for calculations (for 
solving the electronic Schrödinger equation) and their type (geometry optimization, 
calculation of vibrational frequencies, etc.). After that, the program is submitted and the 
calculations will determine the optimal geometry (the structure that has a minimal energy 
on the potential energy surface) and vibrational frequency for the molecule of interest. 
 The general scheme how the GAUSSIAN program performs quantum chemical 
calculations is illustrated on the following flow-chart: 
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Choose a method of calculations

Specify initial molecular geometry

Compute energy for the given geometryby solving the electronic Schrodingerequation approximately

Does the current geometrysatisfy the optimizationcriteria?

Output data for optimizedgeometry

Choose new geometryaccording to optimizationalgorithm
yes

no

Compute energy gradientswith respect to molecular geometry

Compute second derivatives of energywith respect to molecular geometry(force constants)

Compute and outputvibrational frequencies  
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‘Experimental’ 
 Chose a diatomic molecule for calculations. It is recommended that it was the 
molecule for which the student carried out literature search in the PChem Lab I 
CHM3410L course. Submit GAUSSIAN program on the PC in the PChem Lab and type 
in the input data that include the method of calculations, molecular charge and 
multiplicity, and initial molecular geometry: 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Route section specifies the method and the type of calculations. The method is a 

quantum chemical procedure to be used to find an approximate solution for the electronic 
Schrödinger equation and the basis set for molecular wave function. The calculations 
should be carried out employing three different methods: 

 



 6

1) The Hartree-Fock method ‘HF’: this is the simplest ‘ab initio’ (from the first 
principles) method, in which the molecular many-electron wave function is expressed as 
a determinant composed from one-electron wave functions of all electrons in the 
molecule. The HF method is time-efficient but rather approximate, since it does not take 
into account the correlation between motion of different electrons in the molecule 
(electronic correlation): each electron is assumed to be moving in an average field created 
by all other electrons (and by nuclei). 

2) The Møller-Plesset second-order perturbation theory method (MP2): this is the 
cheapest and most efficient method, which takes into account electronic correlation to 
some extent. It should be more accurate than HF. 

3) Density functional B3LYP method. In density functional theory (DFT), the 
electronic energy is expressed as a functional of electron density (square of the wave 
function). This group of methods is the most popular and fast developing in quantum 
chemistry in recent years; they take into account electronic correlation but are as time-
efficient as HF. 

The basis set is specified after the ‘/’. The need to have a basis set in the 
GAUSSIAN calculations is related to the fact that the wave function for each electron in 
the molecule is expressed as a linear combination of atomic orbitals, i.e. the orbitals of 
the hydrogen-atom type. The basis set specifies how many hydrogen-atom type s, p, d, 
etc., orbitals are included. In these calculations, students will use the 6-31G* basis set. 

In summary, in this experiment three following calculations will be performed: 
1. # hf/6-31g* 
2. # mp2/6-31g* 
3. # b3lyp/6-31g* 

The type of calculations is also specified in the route section with keywords ‘opt’ 
and ‘freq’. The ‘opt’ keyword means ‘optimization’; the program is requested to optimize 
molecular geometry, i.e., to find the structure with the lowest potential energy. The ‘freq’ 
keyword specifies calculations of vibrational frequencies. These two keywords should be 
present in all three calculations. 

The title section includes an arbitrary comment describing your calculations. It 
will be also found in the output file. 
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The charge and multiplicity section indicates molecular charge and multiplicity. 
For the neutral molecules, the charge is specified as ‘0’. The multiplicity is the number of 
unpaired electrons in the molecule + 1, i.e., ‘1’ for singlet, ‘2’ for doublet, ‘3’ for triplet, 
etc. 

The molecular specification section is used to input initial molecular geometry. 
It is specified in the form of atomic Cartesian coordinates or a so-called z-matrix, which 
shows interatomic distances, bond angles, and torsional angles. In the case of a diatomic 
molecule, students need to specify only the two atoms comprising the molecule and the 
distance between them: 

Li 
H   1   R 

Here, the first atom in the molecule is lithium ‘Li’ and the second is hydrogen ‘H’ and the 
Li-H distance is designated with the variable ‘R’, which will be optimized during the 
calculations. The initial values for this variable is given (in angstrom) after a blank line: 
 R = 1.30 
 
 After the input is prepared, click the ‘Run’ button to submit calculations. You will 
then be prompted to specify a name for the output file and the calculations will run. 
  As the calculations are completed, open the output file with a word processor 
(MsWord). The output file contains a lot of information including molecular potential 
energy calculated for each optimization step, wave function expressed as linear 
combination of atomic orbitals in the basis set, orbital energies, atomic electric charges, 
etc. The required information is the optimized interatomic distance and the vibrational 
frequency, which are given as follows: 

-- Stationary point found. 
                         ---------------------------- 
                         !   Optimized Parameters   ! 
                         ! (Angstroms and Degrees)  ! 
 ------------------------                            ------------------------- 
 ! Name  Definition              Value          Derivative Info.             ! 
 ----------------------------------------------------------------------------- 
 ! R1    R(1,2)                  1.6209         -DE/DX =    0.               ! 
 ----------------------------------------------------------------------------- 
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and 
Harmonic frequencies (cm**-1), IR intensities (KM/Mole), 
 Raman scattering activities (A**4/AMU), Raman depolarization ratios, 
 reduced masses (AMU), force constants (mDyne/A) and normal coordinates: 
                     1 
                    SG 
 Frequencies --  1399.1094 
 Red. masses --     1.1293 
 Frc consts  --     1.3024 
 IR Inten    --   117.6770 
 Raman Activ --     0.0000 
 Depolar     --     0.0000 
 Atom AN      X      Y      Z 
   1   3     0.00   0.00   0.14 

      2   1     0.00   0.00  -0.99 
 
 For LiH, these results show that the optimal Li-H bond length is 1.6209 Å and the 
vibrational frequency is 1399 cm-1. 
 The lab report should include the results (interatomic distances and vibrational 
frequencies) of the calculations using three different methods, HF/6-31g*, MP2/6-31g*, 
and B3LYP/6-31g*. In the discussion, compare your calculated results with the literature 
data (experimental and theoretical) and compare the accuracy of different methods versus 
experimental values. Also sketch the molecular orbital energy diagram for your molecule, 
deduce its ground state electronic configuration, and multiplicity. Compare the deduced 
electronic configuration with the calculated one – the GAUSSIAN output provides 
calculated energies of the occupied and vacant molecular orbitals. 
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Experiment 8. Electronic structure calculations on diatomic molecules 
 

The postulates and theorems of quantum mechanics form the rigorous foundation 
for the prediction of chemical properties from first principles. Fundamental postulates of 
quantum mechanics – microscopic systems are described by ‘wave functions’ that 
completely characterize all of the physical properties of the system. Quantum mechanical 
‘operators’ correspond to each physical observable that, when applied to the wave 
function, allow one to predict the probability of finding the system to exhibit a particular 
value or range of values for that observable. 

In particular, quantum mechanical calculations are able to compute the structure 
of a molecule. The calculations are usually carried out for isolated molecules – the 
fundamental unit from which pure substances are constructed. The minimum information 
to specify a molecule is its molecular formula (the atoms of which it is composed) and 
the manner in which those atoms are connected. What is required is simply to know the 
relative positions of all atoms in space. The ‘best’ structure – has the lowest possible 
energy given an overall connectivity roughly dictated by the starting positions of the 
atoms as chosen by the theoretician. Geometry optimization in terms of energy 
minimization will give us then the best (optimal) structure. 

The fundamental postulate of quantum mechanics – wave function exists for any 
chemical system, appropriate operators (functions) which act upon  return the 
observable properties of the system: 
      = e 
 is an operator, e is a scalar value for some property of the system. When the equation 
holds,  is an eigenfunction, e is an eigenvalue. The probability that a chemical system 
will be found within some region of multidimensional space is equal to the integral of 
||2 over that region of space. The postulates place certain constraints on an acceptable 
wave function: 1) for a bound particle, the normalized integral of ||2 over all space must 
be unity (the probability of finding it somewhere is one); 2)  must be continuous and 
single-valued. 
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 The operator that returns the system energy, E, as an eigernvalue is called 
Hamiltonian operator: 
  H = E  -  Shrödinger equation 
The Hamiltonian operator takes into account five contributions to the total energy: the 
kinetic energy of the electrons and nuclei, the attraction of the electrons to the nuclei, and 
the interelectronic and internuclear repulsions: 
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 is Plank’s constant divided by 2; 2 is the Laplasian operator: 
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The Hamiltonian operator is composed from the kinetic and potential energy parts. The 
potential energy parts are the same as in classical mechanics. The kinetic energy for a 

QM particle is not |p|2/2m but 

T   2

2m2. 

The Born-Oppenheimer Approximation 
 Under typical conditions, the nuclei of molecular systems are moving much more 
slowly than the electrons (proton and neutrons are ~1800 times more massive than 
electrons) and electronic relaxation with respect to nuclear motion is instantaneous. It is 
convenient to decouple these two motions and compute electronic energies for fixed 
nuclear positions. The nuclear kinetic motion term is taken to be independent of the 
electrons, correlation in the attractive electron-nuclear potential energy term is 
eliminated, and the repulsive nuclear-nuclear potential energy term becomes a simply 
evaluated constant for a given geometry. The electronic Schrödinger equation: 

 (Hel + VN)el(qi;qk) = Eelel(qi;qk) 
Wave functions are invariant to the appearance of constant term in the Hamiltonian – in 
practice, one can almost always solve this equation without the inclusion of VN and then 
add VN to the obtained eigenvalue to obtain Eel. 
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 The Born-Oppenheimer approximation is entirely justified in most cases. It has 
very profound consequences and allows us to use the concept of a potential energy 
surface (PES): The PES is the surface defined by Eel over all possible nuclear 
coordinates. This means that we can determine electronic energy for a certain set of 
nuclear coordinates by solving the electronic Schrödinger equation. Then, by minimizing 
the energy with respect to nuclear coordinates - using gradients of the energy (first 
derivatives of the energy with respect to interatomic distances, bond angles and torsional 
angles) - we can find the equilibrium structure of a molecule. Finally, through 
calculations of second derivatives of the energy with respect to nuclear coordinates (force 
constants), we can compute vibrational frequencies, which can be observed 
experimentally using IR and Raman spectroscopy. 
 The electronic Schrödinger equation cannot be solved exactly for many-electron 
systems. However, various approximate methods exist to obtain a solution to a certain 
level of accuracy. These methods are mathematically complex (they are presented in the 
graduate course CHM5586, Computational Chemistry) and cannot be applied without the 
use of powerful computers. Fortunately, in recent decades sophisticated computer 
programs have been developed for this purpose, which allow a ‘non-expert’ to perform 
quantum chemical calculations. The most popular among these programs are HyperChem 
and GAUSSIAN. In this experiment, students will use the Windows version of the 
GAUSSIAN program to compute geometric structure and vibrational frequencies for 
diatomic molecules. This task requires from the user to prepare a GAUSSIAN input file 
containing a starting molecular geometry and specifying the method for calculations (for 
solving the electronic Schrödinger equation) and their type (geometry optimization, 
calculation of vibrational frequencies, etc.). After that, the program is submitted and the 
calculations will determine the optimal geometry (the structure that has a minimal energy 
on the potential energy surface) and vibrational frequency for the molecule of interest. 
 The general scheme how the GAUSSIAN program performs quantum chemical 
calculations is illustrated on the following flow-chart: 
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Choose a method of calculations

Specify initial molecular geometry

Compute energy for the given geometryby solving the electronic Schrodingerequation approximately

Does the current geometrysatisfy the optimizationcriteria?

Output data for optimizedgeometry

Choose new geometryaccording to optimizationalgorithm
yes

no

Compute energy gradientswith respect to molecular geometry

Compute second derivatives of energywith respect to molecular geometry(force constants)

Compute and outputvibrational frequencies  



 5

‘Experimental’ 
 Chose a diatomic molecule for calculations. It is recommended that it was the 
molecule for which the student carried out literature search in the PChem Lab I 
CHM3410L course. Submit GAUSSIAN program on the PC in the PChem Lab and type 
in the input data that include the method of calculations, molecular charge and 
multiplicity, and initial molecular geometry: 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Route section specifies the method and the type of calculations. The method is a 

quantum chemical procedure to be used to find an approximate solution for the electronic 
Schrödinger equation and the basis set for molecular wave function. The calculations 
should be carried out employing three different methods: 
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1) The Hartree-Fock method ‘HF’: this is the simplest ‘ab initio’ (from the first 
principles) method, in which the molecular many-electron wave function is expressed as 
a determinant composed from one-electron wave functions of all electrons in the 
molecule. The HF method is time-efficient but rather approximate, since it does not take 
into account the correlation between motion of different electrons in the molecule 
(electronic correlation): each electron is assumed to be moving in an average field created 
by all other electrons (and by nuclei). 

2) The Møller-Plesset second-order perturbation theory method (MP2): this is the 
cheapest and most efficient method, which takes into account electronic correlation to 
some extent. It should be more accurate than HF. 

3) Density functional B3LYP method. In density functional theory (DFT), the 
electronic energy is expressed as a functional of electron density (square of the wave 
function). This group of methods is the most popular and fast developing in quantum 
chemistry in recent years; they take into account electronic correlation but are as time-
efficient as HF. 

The basis set is specified after the ‘/’. The need to have a basis set in the 
GAUSSIAN calculations is related to the fact that the wave function for each electron in 
the molecule is expressed as a linear combination of atomic orbitals, i.e. the orbitals of 
the hydrogen-atom type. The basis set specifies how many hydrogen-atom type s, p, d, 
etc., orbitals are included. In these calculations, students will use the 6-31G* basis set. 

In summary, in this experiment three following calculations will be performed: 
1. # hf/6-31g* 
2. # mp2/6-31g* 
3. # b3lyp/6-31g* 

The type of calculations is also specified in the route section with keywords ‘opt’ 
and ‘freq’. The ‘opt’ keyword means ‘optimization’; the program is requested to optimize 
molecular geometry, i.e., to find the structure with the lowest potential energy. The ‘freq’ 
keyword specifies calculations of vibrational frequencies. These two keywords should be 
present in all three calculations. 

The title section includes an arbitrary comment describing your calculations. It 
will be also found in the output file. 
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The charge and multiplicity section indicates molecular charge and multiplicity. 
For the neutral molecules, the charge is specified as ‘0’. The multiplicity is the number of 
unpaired electrons in the molecule + 1, i.e., ‘1’ for singlet, ‘2’ for doublet, ‘3’ for triplet, 
etc. 

The molecular specification section is used to input initial molecular geometry. 
It is specified in the form of atomic Cartesian coordinates or a so-called z-matrix, which 
shows interatomic distances, bond angles, and torsional angles. In the case of a diatomic 
molecule, students need to specify only the two atoms comprising the molecule and the 
distance between them: 

Li 
H   1   R 

Here, the first atom in the molecule is lithium ‘Li’ and the second is hydrogen ‘H’ and the 
Li-H distance is designated with the variable ‘R’, which will be optimized during the 
calculations. The initial values for this variable is given (in angstrom) after a blank line: 
 R = 1.30 
 
 After the input is prepared, click the ‘Run’ button to submit calculations. You will 
then be prompted to specify a name for the output file and the calculations will run. 
  As the calculations are completed, open the output file with a word processor 
(MsWord). The output file contains a lot of information including molecular potential 
energy calculated for each optimization step, wave function expressed as linear 
combination of atomic orbitals in the basis set, orbital energies, atomic electric charges, 
etc. The required information is the optimized interatomic distance and the vibrational 
frequency, which are given as follows: 

-- Stationary point found. 
                         ---------------------------- 
                         !   Optimized Parameters   ! 
                         ! (Angstroms and Degrees)  ! 
 ------------------------                            ------------------------- 
 ! Name  Definition              Value          Derivative Info.             ! 
 ----------------------------------------------------------------------------- 
 ! R1    R(1,2)                  1.6209         -DE/DX =    0.               ! 
 ----------------------------------------------------------------------------- 
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and 
Harmonic frequencies (cm**-1), IR intensities (KM/Mole), 
 Raman scattering activities (A**4/AMU), Raman depolarization ratios, 
 reduced masses (AMU), force constants (mDyne/A) and normal coordinates: 
                     1 
                    SG 
 Frequencies --  1399.1094 
 Red. masses --     1.1293 
 Frc consts  --     1.3024 
 IR Inten    --   117.6770 
 Raman Activ --     0.0000 
 Depolar     --     0.0000 
 Atom AN      X      Y      Z 
   1   3     0.00   0.00   0.14 

      2   1     0.00   0.00  -0.99 
 
 For LiH, these results show that the optimal Li-H bond length is 1.6209 Å and the 
vibrational frequency is 1399 cm-1. 
 The lab report should include the results (interatomic distances and vibrational 
frequencies) of the calculations using three different methods, HF/6-31g*, MP2/6-31g*, 
and B3LYP/6-31g*. In the discussion, compare your calculated results with the literature 
data (experimental and theoretical) and compare the accuracy of different methods versus 
experimental values. Also sketch the molecular orbital energy diagram for your molecule, 
deduce its ground state electronic configuration, and multiplicity. Compare the deduced 
electronic configuration with the calculated one – the GAUSSIAN output provides 
calculated energies of the occupied and vacant molecular orbitals. 

 


